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Tricyclic isomers of adamantane (ClOHl6) are characterized by polymethylene indices 

(PMIs) and molecular symmetry. The PWI is a partition denoted as [l .I, 2m2 , . . . . 6%1 (ml 

l 2m2 + . . . + 6rn6 = 61, in which each integer is the length of a polymethylene unit and 

the power $1 denotes the number of the units. The isomers are then enmerated by 

starting from tetrahedrane (Td) and cyclobutadiene (D2h) as parent skeletons, in which the 

edges are considered to be substituted by polymethylenes. Froa the tetrahedrane skeleton, 

there emerge 32 isomers, which are classified in terms of PM16 and subsymmetries of Td. 

The cyclobutadiene skeleton yields 69 isomers classifed by PM16 and subsymmetries of Dzh. 

Isomer enumerations are also discussed regarding noradamantane and homoadaaantane. 

l l . 

Adamantane rearrangements have long been investigated, since Schleyer’s dfscovery on 

the rearrangement of tetrahydrocyclopentadlene to adamantane.’ Whitlock and Siefken 

studied the mechanisms of such reactions by constructing a rearrangement graph, which 

contains varlous tricyclodecane intermediates. 2 Molecular mechanics provided a method of 

calculating the stabilities of the intermediates. 3*4 Various precursors and intermedlates 

for adamantane were reported and the relationship regarding them was discussed in terms of 

“adamantaneland”.4 Recently, a renaissance on the admantane chemistry led to Iore 

detailed information on the isomeric intermediates and on the mechanisms of the 

rearrangements. !jm7 

In order to clarify the mechanisms, enumerations of potential intermediates are 

necessary. Computatignal and graph-theoretical investlgations4** enumerated Isomers of 

adamantane. They were, however, concerned only with their constitutions but not with 

their configurations. In other words, the enumerations regarded the isomers as two- 

dimentional objects or as chemical graphs. Moreover, the symmetries of the isomers have 

attracted little attention of chemists, because there exist no effective methods for 

enumerating molecular syuetries. 

le have reported a method of enumeration based on unit subduced cycle indices (USC161 

that are derived from the subduction of coset representations.’ This method allows us to 

enumerate chealcal structures as three-dimensional objects. In the continuation of this 

365 
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work ‘ the present paper deals with an enumeration of adamntane isomers a8 three- 

dimensional objects. That is to say, this considers the symmetries or stereochemistries 

of the isomers. For the purpose of applying the Rethod to ad~~t~e isoners, we should 

COuStrUCt table8 Of USCIS iOr Td and DSh p oint groups, the construction of which is the 

other subject of the present paper (see ref. 9). 

IWnmeratioa of Tricycles Vitb la or Its Subsymetry. 

Let us consider tetrabedrane (1) of Td as a parent skeleton. Tricyclodecaues and 

their hoaologs are derived by substitution of polyrethylenes on the edges of the 

tetrahedraue skeleton (1). 

*t - 
m2 T 

“s- 
1 on the edges 

Pigure 1. Derivation of Adasaataue Isomers by Substitution of Pol~et~lenes on the Edges 

of a Tetrahedrane Skeleton (1). 
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Pigure 2. Polypethylene Indices (PME) and Subsyuetries of Td in Several Isomers of 
Adwantane 
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If we consider ml aethylenes. n2 ethylenes, . . . and m6 hexamethylenes to be 

such substituents 

(CH)4(CH2)H. where 

The integer s is 

noted that this 

conformations. 

(Fig. 1). the resulting tricycloalkane has a molecular formula of 

~1 l 2m2 + . . . . l 6m6 = m. (1) 

equal to 6 when we consider the isomers of adamantane. It should be 

methodology takes account of their configurations, but not of their 

The partltlon of B Is denoted as [l ml 2m2 . . . 6m6], which is called a 

polymethylene index (PMI) in the present paper. Since the PMIs indicate the modes of 

substitution, they are capable of characterizing the resulting Isomers. For example, 

adaaantane (21, which is derived by the substituteion of 6 methylenes on the 6 edges of 1. 

is chracterized by the PM1 [161. Similarly, protoadamnantane (3) and its isomer (4) have 

the saae PM1 [1421. 

Alternatlvely, the adasnatane isomers can also be classified in terms of thelr 

symmetries. Since the present skeleton has Td syuetry, the Isomers have the 

subsymmetries Of Td. Figure 2 shows that adamantane (2) of [16] has Td symmetry, Proto- 

adamanetane (3) has Cl syuetry, and the isomer (4) has Czv syuetry. 

The above discussions indicate that our target is an enumeration with respect not 

only to PM16 but also to symmetries. The present method of enumerations contains the 

followlng steps. 

Table 1. Mark Table of Td 

I 
\ J ‘1 c2 ‘s ‘3 ‘4 p2 ‘2~ ‘3~ D2d T Td 

24 0 0 0 0 0 0 0 0 0 0 

12 4 0 0 0 0 0 0 0 0 0 

12 0 2 0 0 0 0 0 0 0 0 

600200 0 0 000 

620020 0 0 000 

660006 0 0 000 

622000 2 0 000 

402100 0 1000 

331013 10 100 

220202 0 0 020 

11111111111 

Step 1 is classification of the edges of a parent skeleton into orbits and 

determination of coset representations. The six edges of the skeleton (1) construct an 

orbit that is subject to a coset representaion, Td(/C2v).10 This symbol denotes a coset 

representation (CR) obtained by the coset decomposition of Td by C2v. This step requires 

the mark table of Td (Table l).ll When we examine the skeleton (1) and count fixed edges 

regarding every subgroup, we obtain a flxed-point vector, 12, i.e.. (62200020 0 0 
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Table 2. The Inverse of the Mark Table of Td 

Td Td Td Td Td Td Td Td Td t Td 
1 ’ (/Cl) I&) l/C,) (/+j) (/Sq) t/D,) (/$) t&j,) (/D2d) t/T) (/Td, q “1 

Cl l/24 0 0 0 0 0 0 0 

C2 -l/8 l/4 0 0 0 0 0 0 

Cs -l/4 0 l/2 0 0 0 0 0 

C3 -l/6 0 0 l/2 0 0 0 0 

S4 O -l/4 0 0 l/2 0 0 0 

D2 l/12 -l/4 0 0 0 l/6 0 0 

C2v l/4 -l/4 -l/2 0 0 0 l/2 0 

CJv l/2 0 -1 -l/2 0 0 0 1 

D2d ’ l/2 0 0 -l/2 -l/2 -l/2 0 

T l/6 0 0 -l/2 0 -l/6 0 0 

Td -l/2 0 1 l/2 0 l/2 0 -1 

0 0 0 l/24 

0 0 0 l/8 

0 0 0 l/4 

0 0 0 l/3 

0 0 0 l/4 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 l/2 0 0 

-1 -l/2 1 0 

01, whose elements are the number of fixed edges. This vector is identical to the 

Td(/C2v) row of Table 1. Hence, we arrive at the assignment of the six edges. 

Alternatively, the vector is multiplied by the inverse of the mark table (Table 2). Then 

we obtain a vector, (0 0 0 0 0 0 1 0 0 0 0). which shows the appearance of Td(&). 

Step 2 is construction of a subduced cycle index (SCI) from unit subduced cycle 

indices (USCIS). We have preestimated USC18 for Td syuetry a8 shown in Table 3.13 Using 

the Td(/(&) row of this table, we obtain an SC1 for every 8Ub8yUetry. Note that, in 

this ca8e. the SC1 is equal to the USCI, because there emerges only one orbit.14 

Step 3 is introduction of a figure inventory into the SCI. For the purpose of 

maniputlating this ca8e, we introduce a figure inventory, 

Sk = 1 l Xl k k 
l x2 + . . . l x6 k , (2) 

into the above SCIS. Thereby, we obtain fixed-point-counting polynomials. The variable 

xr is concerened with the 8UbBtitUtiOII of (C62)r. Hence, the term ‘1 ‘2 

.l 2m2 . . . 6m6]. 

Xl x2 .-.x6 ‘6 

COrre8pOnd8 to the PM1 [l 

81 6 = (1 + xl + . . . l x6)6 for Cl; (38) 

2 81 82 2 = (1 + xl + . . . *x6)2(1 + xl2 + . . . + x62)2 for C2; (3b) 

2 81 “2 2 = (1 l xl l . . . +x6j2(1 + xl2 + . . . + xs2j2 for C8; (3c) 

“3 2 = (1 +x13 + . . . + x63)2 for C3; (3d) 

8284 = (1 *Xl2 l . . . t X62)(l + Xl4 t . . . + x64) for S4: (3e) 

83 2 = (1 tx13 + . . . + X63)2 for C3; (3f) 

‘2”4 = (1 +x12 l . . . + X62)(1 + x14 + . . . + X64) for S4; (3g) 

823 = (1 *Xl2 + . . . l X62)3 for D2; (3h) 

S1284 = (1 + Xl l . . . + X6)2(l + Xl4 + . . . + x64) for $,,; 

832 = (1 *Xl3 + . . . l X63)2 for C3v; 

(31) 

(3’) 
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s2s4 = (1 *xi2 + . . . + ~6~)(1 l xl4 l . . . + xG4) for D2d; (3kl 

‘6 = 1 + x16 + . . . l X66 for T; (31) and 

66 = 1 + xl6 + . . . l x66 for Td. (3ml 

We expand these equations and then collect terms of the same power. Table 4 lists the 

resulting coefficients of the index terms (xl ml m2 x2 .-.x6 m6 1, where ml + 2m2 + . . . + 6m6 = 

6. These partitions of the integer 6 correpond to adamantane isomers. 

In Step 4, Table 4 is regarded as a matrix, which is then multiplied by the inverse 

of the mark table for Td (Table 2). The resulting matrix is found in Table 5. in which 

each row is concerned with an index term (or PM11 and each column corresponds to a 

subsymmetry; and their intersection is the number of adamantane isomers with the PM1 and 

the subsymmetry. 

Figure 3 depicts the 32 isomers enumerated in Table 5. Each of the isomers is 

accompanied with its PM1 and its symmetry. There emerge no isomers belonging to s, S4 or 

T symmetry. The total number (32) is equal to the value obtained by Balaban.” However, 

the present result provides more detailed information on the symmetry of the isomers, 

which has never been discussed. Thus, we are able to conclude that there emerge 16 chiral 

isomers, 

one is a 

The 

at Issue 

found in 

The 

among which the 12 isomers are assymetric (Cl), the three belong to C2 and the 

D2 isomer. 

enumeration of noradamantane isomers is accomplished in a similar way. The terms 

are xl 5 t x13x2, x12x3, x1x22, x1x4. x2x3. and x5 in eqs. 3a-3m. The results are 

Table 6. There emerge 18 isomers in all. Figure 4 illustrates these isomers. 

numbers of homoadamantane isomers are calculated and collected in Table 7, which 

totally contains 47 is0ners.l’ 

If we use an alternative figure inventory. 

Ek = 1 + ,k + ,2k + . , . l p, (41 

in place of eq. 2, we can obtain a summarized result. Note that the corresponding 

generating functions regarding eq. 4 are those in which the variables (x,1 of eqs. 3a-3m 

are replaced by xr. Table 8 collects the coefficients of the terms xr ( r = 0 to 81. 

Table 8 regarded as a matrix is multiplied by Table 2 to afford Table 9; the terms (x7, 

x6, and x5) indicate the isomers of homoadamantane, adamantane, and noradamantane. 

respectively. Hence, the row for x6 (adamantane isomers) is equal to the bottom of Table 

5, which is obtained by summing up each column. Similarly, the rows for 

(homoadamantane isomers) and x5 (noradamantane isomers) in Table 9 are identical with the 

bottoms of Tables 6 and 7. 

The total number of isomers with the index term (x’) is calculated in the form of a 

generating function. We again use the Td(/C2v) row of Table 1. Additionally. we utilize 

the factors collected at the bottom of Table 3. These factors have been obtained by 

summing up the respective rows of the inverse of a mark table (Table 21. We thereby 

obtain a cycle index (ZI). 

ZI (Td: sk) = (1/24)s16 l (l/8)~I~s2~ l (1/4lsl2s22 + (l/3)s32 l (1/4ls264 

= (1/241(si6 + 9~1~~2~ + 8~3~ + 6~3~4). (5) 
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Table 4. Coefficients Appearing in Eq. 3 

Index PM1 Coefficients for 

term Cl ct es C3 s4 *2 % % *2d T Td 

Xl6 D61 1 1 1 1 1 1 1 1 1 1 1 

xl4X2 11421 30 2 2 0 0 0 2 0 0 0 0 

X13,3 [1331 60 4 4 0 0 0 0 0 0 0 0 

xt2xz2 [ 12221 90 6 6 0 0 6 0 0 0 0 0 

x12x4 11241 60 4 4 0 0 0 0 0 0 0 0 

“1’2’3 [1233 120 0 0 0 0 0 0 0 0 0 0 

XIX5 1151 30 2 2 0 0 0 2 0 0 0 0 

x23 1231 20 4 4 2 0 0 0 2 0 0 0 

x2x4 1241 30 2 2 0 0 0 2 0 0 0 0 

x32 I321 15 3 3 0 1 3 1 0 1 0 0 

x6 ISI 6 2 2 0 0 0 2 0 0 0 0 

Tab10 5. Number of Adamantane Isomers (C10H16) 

Idex 

terli 

PHI Number of Adamantane Isomers of Total 

c1 C2 % cj s4 D2 c2v %v D2d * *d *Or PHI 

XI6 II61 0 0 0 0 0 0 0 0 0 01 1 

x14x2 I1421 10 0 0 0 0 10 0 0 0 2 

x13x3 I1331 112 0 0 0 0 0 0 0 0 4 

x12x22 I12221 2 0 3 0 0 10 0 0 0 0 6 

x12x4 I1241 112 0 0 0 0 0 0 0 0 4 

‘1’2’3 El231 5 0 0 0 0 0 0 0 0 0 0 S 

x1x5 [151 10 0 0 0 0 10 0 0 0 2 

x23 I231 0 I.0 0 0 0 0 2 0 0 0 3 

‘2’4 I241 10 0 0 0 0 10 0 0 0 2 

x32 I321 0 0 10 0 0 0 0 1.0 0 2 

‘6 i6l 0 0 0 0 0 0 10 0 0 0 1 

Total 12 3 8 0 0 1 4 2 1 0 1 32 
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Table 6. Nmber of Noradamantane Isomers (C9H14) 

Idex 

term 

PHI Number of Noradamantane Isomers of Total 

c1 %? % cj s4 D2 %Zv % D2d T Td for PHI 

Xl5 
x13x2 

x12x3 

xlx22 

x1x4 

151 0 0 0 0 0 0 10 0 0 0 1 

1321 112 0 0 0 0 0 0 0 0 4 

1231 112 0 0 0 0 0 0 0 0 4 

1221 112 0 0 0 0 0 0 0 0 4 

141 10 0 0 0 0 10 0 0 0 2 

‘2’3 I231 10 0 0 0 0 10 0 0 0 2 

x5 151 0 0 0 0 0 0 10 0 0 0 1 

Total 5 3 6 0 0 0 4 0 0 0 0 16 

35 c, 36 C2 37 cs 38 Cs 

39 Cl 40 c2 41 cs 42 Cs 

43 Cl 44 c2 45 cs 46 Cs 

[231 g - 
49 Cl 50 C2v 

Fig. 4 
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Table 7. Number of Homoadamantane Isomers (CllHl8) 

Idex 

term 

PM1 Number of Homoadmantane Isomers of Total 

‘1 %I =s C3 s4 D2 %v % D2d T Td *Or p”I 

x1ox2 [lb21 0 

X14,3 
x13x22 

x13x4 

‘12’2’3 

x12x5 

xlx23 

x1x3x4 

xlx32 

‘1’6 

x22x3 

‘2’5 

x3x4 

[1431 1 

[13221 1 

11341 1 

[12231 6 

11251 1 

11231 1 

I1241 5 

11321 1 

1161 1 

1223l 1 

1251 1 

[341 1 

0 

0 

1 

1 

1 

1 

1 

0 

1 

0 

1 

0 

0 

0 

0 

2 

2 

2 

2 

2 

0 

2 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 1 

0 2 

0 4 

0 4 

0 9 

0 4 

0 4 

0 5 

0 4 

0 2 

0 4 

0 2 

0 2 

Total 21 7 14 0 0 0 5 0 0 0 0 47 

Table 6. Coefficients Derlved By the Figure Inventory (Eq. 4ja 

Index 

termb 

Coefficients for 

Cl C2 Cs C3 ‘4 D2 c2v c3v D2d T Td 

X8 I 

X7 

X6 

X5 

X4 

X3 

X2 

X 

1 

1251 51 51 0 3 15 11 0 3 0 0 

786 38 38 0 0 0 10 0 0 0 0 

462 30 30 3 2 10 10 3 2 1 1 

252 20 20 0 0 0 8 0 0 0 0 

126 14 14 0 2 6 6 0 2 0 0 

56 8 8 2 0 0 4 2 0 0 0 

21 5 5 0 1 3 3 0 1 0 0 

6 2 2 0 0 0 2 0 0 0 0 

11111111111 

a The coefflclents of the tern X’ are obtalned by introducing the figure 

inventory (eq. 4) lnto the SC16 (eq. 3). b The index term (x7) corres- 

ponds to homoadamantane isomers. The term (x6) corresponds to adaman- 

tane Isomers. The term (x5) is concerned with noradamantane isomers. 
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Table 9. Numbers of Isomers of Bishomoadmantane. Homoadmantane, 

Adamantane. Noradamantane, and Lower Homologsa 

Index Number of Isomers for 

termb cl c;! cs C3 ‘4 D2 c2v ‘3” D2d T Td 

Total 

number 

X8 

X7 

:i 

X4 

X3 

X2 

X 

1 

37 7 20 0 0 1 4 0 3 0 0 72 

21 7 14 0 0 0 5 0 0 0 0 47 

12 3 8 0 0 1 4 2 1 0 1 32 

5 3 6 0 0 0 4 0 0 0 0 18 

2 14 0 0 0 2 0 2 0 0 11 

110 0 0 0 2 2 0 0 0 6 

0 0 10 0 0 10 10 0 3 

0 0 0 0 0 0 10 0 0 0 1 

0 0 0 0 0 0 0 0 0 01 1 

a The coefficients of the term xm are obtained by introducing the figure inventory (eq. 4) 

into the SCIs (eq. 3). b The index term (x7) corresponds to homoadanantane Isomers. The 

tern (x6) corresponds to adamantane Isomers. The term (x5) IS concerned with 

noradamantane isomers. 

Table 10. Unit Subduced Cycle Indices for D2h Group. 

Cl c2 C2’ c2” c, c, ’ c,” Cl C2v ‘2”’ %” ‘2h %?h’ C2h” D2 D2h 

D2h(/Cl) “la S24 s24 S24 S24 S24 s24 S24 1x4~ sq2 S42 Sq2 s42 sq2 s42 sa 

D2h(/C2) s14 S14 S22 s22 S22 S22 s22 S22 s22 “4 S4 S22 s4 s4 ,22 s4 

D2h(/C2’) S14 S22 S14 S22 s22 1x2~ S22 S22 “4 S22 84 s4 s22 s4 s22 s4 

D2h(/$") s14 sz2 sz2 s14 sz2 S22 s22 sz2 5z2 "4 b'z2 S4 S4 s22 s22 s4 

Dah(/Cs) S14 sz2 Sz2 s22 s14 s22 S22 sz2 Sz2 Sz2 Sq S4 s4 s22 s4 s4 

D+(/Cs') s14 Sz2 sz2 S22 S22 S14 s22 s22 sz2 S4 S22 s4 s22 s4 s4 s4 

&,(/Cs") s14 6s2 Es2 Sz2 sz2 ~2~ ~1~ sz2 S4 s22 s22 s22 s4 s4 s4 s4 

D2h(/cI) s14 sz2 sz2 s22 s22 s22 s22 s14 S4 S4 s4 s22 s22 s22 s4 s4 

D2h(&) s12 s12 "2 "2 s12 s12 "2 "2 s12 "2 62 s2 s2 s2 s2 s2 

D2h(&,,') s12 62 s12 62 s12 62 s12 "2 "2 s12 "2 s2 s2 s12 s2 s2 

D2h(/c2vw) s12 "2 62 s12 52 s12 S12 "2 "2 "2 s12 s2 s2 s2 s2 s2 

Dzh(/CZh) s12 s12 "2 "2 "2 62 s12 s12 62 "2 "2 131~ 92 s2 s2 s2 

D2h(/CZh') s12 "2 S12 "2 "2 S12 "2 s12 52 9 S12 "2 s12 s2 s2 s2 

Dzh(&h") s12 "2 "2 s12 s12 "2 62 s12 62 62 52 92 s2 s12 s2 s2 

D2h(&) s12 s12 s12 s12 s2 62 s2 62 62 62 s2 s2 s2 s2 s12 s2 

D2h(‘D2h) ‘1 *l sl sl *l sl *l “1 sl sl sl “1 “1 “1 “1 s1 
Factor l/8 l/8 l/8 l/8 l/8 l/8 l/8 l/8 0 0 0 0 0 0 0 0 
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This ZI can be proved to be identical to that derived alternatively by Pdlya’s theorem.17 

Introduction of eq. 4 into eq. 5 affords a generating function, 

c(X) = zI(Td; 1 + Xk + X2k l . . . l X6k) 

= (1 + x36) + (x + x35) + 3(x2 +x341 + 6(x3+ x33) + 11(x4 + x32) l 18(x5 l x31) l 

32(x6 + x3’) + 47(x7 + x2’) + 72(x8 + x28) + 102(x9 + x27) + 140(x1’ + x26) + 

182(x11 + x25) + 235(x12 l x24) l 282(x13 l x23) l 3341~~~ l x22) l 

378(x15 + x21) l 414(x16 l x2’) l 434(x17 l x1’) l 447~~~. (61 

The coefficients of the terms xr (r = 0 to 8) in eq. 6 are equal to the values of the 

rightmost column of Table 9, which are obtained by summing up the respective rows. 

Enumeration of Tricyclodecanee with Dzh or It6 Subeymmetry. 

Let us work out cyclobutadiene (52) as a parent skeleton (Fig. 5). In order to 

derive stereoisomers, we consider the cyclobutadiene to be a D2h body whose double bond is 

regarded as a double arc perpendicular to the molecular plane. Thus the skeleton (52) has 

6 edges. We then place methylenes on the edges in a similar way as described in the 

previous section. The present enumeration requires a table of USC16 (Table 10) and the 

inverse of a mark table (Table 11) for D2h symmetry. 

52 on the edges 

Figure 5. Cyclobutadiene as a D2h skeleton 

The six edges are classified into two orbits, which are subject to D2h(/Cs) and 

D2h ( /c2v” ) . 18 The SCIs for the skeleton (52) are constructed from USCIs of Table 10 as 

follows. 

(s,2l(s,4i for Cl; (6al 

(s21 (s221 for C2, C2’. Ci. C2,, Czv’. and C2h”; (6b) 

(s,2i(s221 for C2”, Cs, and Cs”; (6~1 

(s-2) (s141 for Cs; (6dl 

(s12) (s4) for C2v”; (se) and 

(62) (s4) for C2h. C2h’, D2. and Dgh; ((X-1 
in which each USC1 in the first parentheses comes from the D2h(/C2v”) row of Table 10 and 

each USC1 in the second parentheses stens from the Dah(/Cs) row. 

The introduction of a figure inventory (eq. 2) and the subsequent expansion of the 
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SCIs afford generating functions, in which the coefficients of the term (xl ml m2 x2 . ..x6 m6) 

indicates the number of fixed points. Table 12 collects the coefficients that correspond 

to the partition. ~1 l 2m2 + . . . l 6m6 = 6. 

Table 12 is multiplied by the inverse of the mark table for Dlh (Table ll).l’ The 

resulting matrix is shorn in Table 13, in which the number of isomers is found at the 

intersection of a subsymmetry column and a PM1 row. 

Figure 6 illustrates all the isomers shorn in Table 13. There appear 89 isomers. 

Stereoisomers are linked by a bracket, if they have the same subsyuetry.2o m- and 

E-tetrahydrodicyclopentadienes, which are Schleyer’s precursors of adamantane. appear a8 

C, isomers in the (1231 series. There are several stereoisomers that belong to different 

subsymmetry. The C2v and C2h” isomers in the [1222] series are examples of such cases. 

For example, a syn-form (94) belongs to C 2v Symmetry and anti-form (96) has C2h” Symmetry. 

In order to obtain a summarized result, we introduce the other figure inventory (eq. 

4) into the SC16 (eqs. 6). The resulting generating functions afford the numbers of fixed 

points as the coefficients of the terms (1. x, x2, . . . . x8). which are collected in the 

form of a matrix. This matrix is multiplied by the inverse (Table 111 to give Table 14. 

This table contains the number of isomers having the respective subsymmetries. For the 

adamantane series, the x6 row of Table 14 shows the numbers, which are equal to those 

listed at the bottom of Table 13. 

This skeleton (D2h(/Cs) and D2h(/$“) provides a cycle index in terms of the data of 

Table 10, i.e., 

ZI(D2h: Sk) = (l/8)(s16 + 3S23 + 3S12,22 + S14S2). (7) 

Introduction of eq. 4 into eq. 7 affords a generating function, 

G(x) = 21(D2h: 1 l Xk + . . . + X6k) 
= ,36 + 2x35 t . . . + 216x8 + 137x7 + 89x6 l 49x5 + 29x4 l 

13x3 + 7x2 l 2x + 1. (81 

The coefficient of x6 in eq. 8 is 89, which is equal to the SUB obtained from Table 13 or 

14. 

Conclueioa. 

Tricyclic isomers of adamantane are enumerated by starting from tetrahedrane (Tdl and 

cyclobutadiene (D2h). The method of enumeration is based on unit subduced cycle indices, 

which are derived from the subduction of coset representations. The enumeration is 

concerned with polymethylene indices (PMIs) as well as subsyuetries of the two Point 

groups. For example, adamantane itself is chracterized by the PM1 1161 and Td SYUetrY. 

There emerge 32 isomers fron the tetrahedrane skeleton and 89 isomers from the 

cyclobutadiene skeleton. 
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Table 12. Coefficients of the Terms from Eqs. 2 and 4. 

Index Coefficient of the Index Term 
PM1 

C2 cz’ C2” Cs ’ Term Cl Cs c,” cl c2v %’ c2v” c2h ‘2h’ ‘2h” D2 D2h 

Xl6 I161 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

x14x2 I1421 30 0 0 2 12 2 2 0 0 0 2 0 0 0 0 0 

x13x3 [133] 60 0 0 4 26 4 4 0 0 0 0 0 0 0 0 0 

x12x22 [1222] 90 6 6 6 18 6 6 6 6 6 0 0 0 6 0 0 

x12x4 [124] 60 0 0 4 26 4 4 0 0 0 0 0 0 0 0 0 

‘1’2’3 [123] 120 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 

x1x5 1151 30 0 0 2 12 2 2 0 0 0 2 0 0 0 0 0 

x23 1231 20 0 0 0 4 8 4 4 0 0 0 0 0 0 0 0 

‘2’4 L241 30 0 0 2 12 2 2 0 0 0 2 0 0 0 0 0 

x32 I321 15 3 3 3 7 3 3 3 3 3 1 1 1 3 1 1 

‘6 I61 6002 42 2 0 0 2 0 0 0 0 0 0 

Table 13. Number of Adamantane Isomers (CloH16) Based on the Skeleton (52) 

Index 

Term 

Number of Isomers 
PM1 

Cl 4% C2’ C2” Cs Cs ’ c,” ci c2v ?Zv’ %” ?2h %Zh’ C2h” D2 D2h 

Xl6 I161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

x14x2 11421 2 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 

x13x3 I1331 4 0 0 1 4 1 1 0 0 0 0 0 0 0 0 0 

x12x22 112221 9 0 0 0 0 0 0 0 3 3 0 0 0 3 0 0 

x12x4 I1241 4 0 0 1 4 1 1 0 0 0 0 0 0 0 0 0 

‘1’2’3 I1231 12 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 

x1x5 I151 2 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 

x23 1231 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 

‘2’4 1241 2 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 

x32 I321 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 

‘6 I61 0000 10 0 00 0 10 0 0 00 

Total 36 0 0 3 26 3 3 0 4 4 4 0 0 4 0 2 
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Table 14. Number of C4 to Cl2 Isoners Based on the Skeleton (52) 

Index Number of Isoners 

Terma Cl c2 f-72’ C2 ” c, c; c,” ci C2” C2v’ %?v” %?h ?Ah’ ?2h” D2 D2h Tota1 

X8 110 0 0 7 60 7 7 0 6 6 4 0 0 6 0 3 216 

:’ 62 36 0 0 0 0 7 3 49 26 7 3 7 3 0 0 4 0 4 0 4 5 0 0 0 0 4 0 0 0 0 2 137 69 

x5 16 0 0 3 20 3 3 0 0 0 4 0 0 0 0 0 49 

X4 a 0 0 i a i i 0 2 2 2 0 0 2 0 2 29 

:i 2 1000100011100101 0 0 1 6 1 1 0 0 0 2 0 0 0 0 0 13 7 

X 0 00 0 10 0 00 0 10 0 0 00 2 

1 0 00 0 00 0 00 0 0 0 0 0 01 1 

a The term (x’) corresponds to a compound having II methylenes. Thus, adaaantane isomers 

are found in the row of q = 6. 

53 D2h 

66 c, 67 c, 68 c, 69 C, 70 C; 

71 Cl 72 Cl 73 Cl 

77 cs 78 cs 79 cs 80 Cs 81 C; 

Fig. 6 
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lo The COSetCSentatiOIN’ (CRs) for Td POillt group are {Td,(/C,), Td(/C$. Td(/Cs). 

Td(&), Td(/Sq), Td(/D2), Td(/s). Td(/C&, Td(/D2d), Td(/T), and Td(/Td)) in all. 

These symbols of CRs are designed for characterization of molecular symmetry. See ref. 9. 

For the assignment of such a CR to an orbit, see W. Burnside, Theory of Groups of Finite 

Order (2nd a, Cambridge Unive. Press, Cambridge (1911). For application of a mark 

table, see W. Hlsselbarth, Theor. Chim. Acta. 67, 339 (1985); and C. A. Mead, J. Am. Chem. 

sot., 109, 2130 (1987). 

l1 Table 1 was constructed by examining the concrete coset representations of the Td 

symmetry. which were, in turn, obtained from the corresponding multiplication table. The 

detailed procedure will be reported elsewhere. 

l2 We refer to all of the positions or of edges as “points”, in an abstract fashion. 

l3 For the construction of the table of USCJs, see ref. 9. 

l4 Mathematical foundations will be reported elsewhere. 

l5 Balaban’s enumeration is concerned only with constitution of isomers, because he 

considered the tetrahedrane skeleton to be a graph. See ref. 8. 

l6 The present enumeration takes no account of heptamethylene units. 

l7 For the proof, see ref. 9. 

l8 The CRs for B2h are tB2h(/Cl), B2h(/C), B2h(/C2’).B2h(/C2”), B2h(/C,). B,h(/Cs’), 

B2h(/C,“). B2h(/Ci). B2h(/C2V). B2h(/C2V’). B2h(/C2V”). B2h(&h). B2h(/C2h’). B2h(&h”). 

B2h(/B2), and B2h(/B2h)), in all. 

lg The inverse of a mark table for D 2h was obtained by a COSet decomposition Of B2h. 

2o Balaban’s enumeration took no account of stereoisomerisa.8 Hence, it yielded the total 

number of 66 for this series. 


